๐Ÿ‡ฌ๐Ÿ‡ง Hello !
๐Ÿ‡จ๐Ÿ‡ณ Ni Hao !
๐Ÿ‡ช๐Ÿ‡ธ Hola !
๐Ÿ‡ฎ๐Ÿ‡ณ Namaste !
๐Ÿ‡ป๐Ÿ‡ณ Xin chร o !
๐Ÿ‡ธ๐Ÿ‡ฆ As-salaam 'alykum !
๐Ÿ‡ซ๐Ÿ‡ท Bonjour !
๐Ÿ‡ท๐Ÿ‡บ Zdravstvuyte !
๐Ÿ‡ฐ๐Ÿ‡ท Anyeong Haseyeo !
๐Ÿ‡ฏ๐Ÿ‡ต Konnichiwa !
๐Ÿ‡ต๐Ÿ‡ญ Kamusta !
๐Ÿ‡ฌ๐Ÿ‡ท Yiasou !
๐Ÿ‡ต๐Ÿ‡น Olรก !
๐Ÿ‡ง๐Ÿ‡ฉ Nรดmรดล›kar !
๐Ÿ‡ฉ๐Ÿ‡ช Guten Tag !
๐Ÿ‡ฎ๐Ÿ‡ท Salฤm !
๐Ÿ‡ต๐Ÿ‡ฑ Czeล›ฤ‡ !
๐Ÿ‡ช๐Ÿ‡น Selam !
๐Ÿ‡ฎ๐Ÿ‡ฑ Shalom !
๐Ÿ‡น๐Ÿ‡ญ Sฬ„wแบกsฬ„dฤซ !
๐Ÿ‡ฟ๐Ÿ‡ฆ Sawubona !
๐Ÿ‡น๐Ÿ‡ท Merhaba !
๐Ÿ‡ธ๐Ÿ‡ช Hej !
๐Ÿ‡ฎ๐Ÿ‡น Ciao !

Projects

Branch_Base

A blogging application created using the Python framework, Django.

AWS S3 for file storage, PostgreSQL for a database, hosted on Heroku.

Github.com/matthewjkang/BranchBase

Comparison of Machine Learning Algorithms

Performance Analysis of K-NN, SVM, and Logistic Regression on datasets of 10,000+ rows.

Used hyperparameter tuning to find optimal k value for k-folds cross validation.

Project is presented in the form of a LaTeX document.

MachineLearning.pdf

Taxicab Dataset Analysis

Used Python libraries such as Pandas, SKLearn, Seaborn, and Matplotlib to analyze a dataset of 30,000,000+ points.

Used Dask to conduct computations in parallel.

Project is presented in the form of a jupyter notebook.

Taxicab.html

Many More

A multitude of internal tools, scripts, and analysis projects that I have created throughout various jobs.

Github.com/MatthewJKang